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Abstract

This paper presents a non-iterative, fast, and almost automated time-data analysis method for NMR spectroscopy, based on a

new adaptive implementation of high resolution methods used in spectral subbands. It is intended to avoid the choice of the

decimation factor (or the width of the spectral windows) which, in the case of a uniform decomposition, strongly conditions the

estimation results, and to diminish the computational burden. It is achieved through successive decimation/estimation stages each

followed by a test procedure in order to decide whether or not the process should continue. The proposed test is based on a local

spectral flatness measure of the estimation residuals. This stop-criterion involves an a posteriori validation of the estimation, thus

the method proposed allows one to obtain a better detection rate at a lower complexity comparatively to other stopping rules, while

preserving a reasonable estimation variance. Moreover, the reliability of the fitting algorithms considered is improved, by decreasing

the influence of the model order and the number of false detections. Finally, the method is more efficient than Fourier transform

(FT) at low signal-to-noise ratio (SNR). The effectiveness of the method is demonstrated by analyzing a simulation signal and raw

carbon-13 experimental data.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In spite of the considerable progress of the nuclear

magnetic resonance (NMR) in the last 20 years, the

Fourier transform (FT) remains the standard proce-

dure for NMR signal processing. Nevertheless, new

signal processing methods have been proposed during

the same period of time including maximum entropy

methods [1], linear prediction (LP) methods [2–4], and
state space approaches [5–7]. Surveys of these methods

may be found in [8–11]. Along with their better reso-

lution capabilities, these so-called high resolution

techniques present other advantages. In particular,
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most of them are non-iterative schemes, and they may
yield directly the important parameters (frequencies,

damping factors, amplitudes, and phases), without

needing some deconvolution algorithm. Unfortunately,

several drawbacks prevent them from replacing the FT.

First, all of them generally require some trial-and-error

adjustment, especially concerning the choice of the

number of pertinent parameters (i.e., the order of the

model). Second, the time spent for the computation is
generally much longer than that of the FT. Finally,

when the signals are of high complexity (i.e., made up

of a great number of samples and/or containing a great

number of resonances), all the problems become more

crucial leading to a degradation of the overall perfor-

mance. Moreover, in some situations, the problem may

become actually untractable from a numerical point of

view, because of the large amount of memory capaci-
ties requested.
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To overcome these problems, a natural approach
consists in attempting to decompose the initial signal in

several spectral subbands to replace a large eigenvalue

problem by several small ones. Such a method, called

LP-ZOOM, has been proposed in the NMR literature

by Tang and Norris [12]. It is based upon LP applied on

a single spectral window. More recently, a new approach

named filter diagonalization method (FDM) has been

introduced [13] which is comparable to the Matrix
Pencil method [14]. It was then reformulated by Man-

delshtam and Taylor [15] and further analyzed in several

papers [16–18]. This method has the advantage to yield

an estimate of the amplitudes without the need of a

second least squares procedure. Another approach

combining a uniform subband decomposition scheme

and an ARMA estimation procedure was proposed in

[19] and was shown to be efficient in processing long 13C
NMR signals. The latter two approaches share the same

computational advantages than LP-ZOOM since both

perform a local spectral analysis, but they are preferable

from the point of view of estimation performances.

Generally speaking, the idea of processing a signal by

using small spectral windows has been known for a long

time in the signal processing community. It is known as

beamspacing in the array processing literature [20,21]
and as subband decomposition or decimation in spectral

analysis [22,23]. This technique may be seen as a pre-

processing of the signal, and thus is independent from

the method used for the estimation. In addition to their

computational efficiency, subband techniques present

several other advantages comparatively to a fullband

estimation (i.e., achieved on the whole signal) [18,19,23–

25].
Indeed, all these techniques are able to surpass the FT

in estimation and detection performances when the

corresponding parameters are properly chosen. Among

these parameters, the degree of the decomposition will

have strong influence on the detection rates, along with

the order of the model considered (or equivalently the

number of bases in the case of FDM). A solution to the

problem of choosing the depth of the decomposition is
given by adaptive approaches. The idea of an adaptive

decomposition has been studied in a wide range of ap-

plication domains including subband coding, noise

suppression, spectral analysis, etc. Several papers have

been published on the subject [24,26,27], using different

kinds of criteria to achieve optimal decompositions.

Most of them are based on the minimum description

length (MDL) principle [24,28]: the decomposition is
stopped if the estimated number of modes in a particular

node is greater than the one obtained in its children.

This technique is built to maximize (in theory) the

number of detections. The problem which arises with

such an approach is that it does not ensure that all the

spectral information has been retrieved, because order

criteria are not always reliable and what is worse, the
decision is taken before the subband estimation. Thus,
the resulting decomposition does not take into account

the fact that an isolated mode may be estimated without

needing a deeper decomposition. Now, this fact is par-

ticularly crucial for damped sinusoids since the damping

factors increase with the degree of decimation and this

could lead to an excessive spectral flatness.

The present work is intended to overcome this

problem. It consists in a general strategy which can be
applied with any estimation method, although it was

originally developed as an improvement of the method

proposed in [19]. The latter has been modified by adding

a novel stopping rule to the decomposition process thus

resulting in an adaptive approach. The criterion em-

ployed reflects the quality of the estimation in a given

subband by evaluating the spectral flatness measure of

the corresponding residuals. The decomposition is
stopped only if the residuals are close to white noise, i.e.,

all local modes are retrieved. The resulting approach not

only selects automatically the subbands where spectral

peaks are present and reject the others, but also allows

the algorithm to stop the decomposition on the bands

where all modes may be easily extracted without the

need of a deeper decomposition [29,30]. This is the main

difference between the proposed adaptive approach and
the existing ones. Obviously, the proposed strategy may

also be extended to all subband-like techniques, in-

cluding LP-ZOOM, FDM, and decimated signal diag-

onalization (DSD) [31], etc.

In Section 2 of this paper, some recalls about the

uniform subband decomposition are presented: the main

stages are set forth including the decomposition process

itself and the estimation of subband parameters. Section
3 introduces the adaptive subband decomposition along

with a new stop-criterion based on a measure of local

spectral flatness of estimation residuals. In Section 4,

some simulation trials are proposed to compare the

performances of a fullband estimation and three differ-

ent subband approaches. Then, in Section 5, the effec-

tiveness of the method is demonstrated by analyzing

raw carbon-13 experimental data (a synthetic mixture
sample and a natural product sample). The results

are compared to those obtained with FDM and a

uniform decomposition using LPSVD or high-order

Yule-Walker (HOYWSVD) as estimators. Finally, the

conclusions are given in Section 6.
2. Uniform subband decomposition and parameter esti-

mation

A free induction decay (FID) signal is a superposition

of M damped complex exponentials in noise

yðnÞ ¼
XM
k¼1

hkznk þ eðnÞ; ð1Þ



Fig. 1. Frequency response of the lowpass filter gðnÞ.
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for n ¼ 0; 1; . . . ;N � 1. Here hk ¼ Ak expðj/kÞ is the
complex amplitude of mode zk ¼ expð�ak þ jxkÞ. The
noise term eðnÞ is often considered as zero-mean white

noise sequence. The purpose of this work is to estimate

the parameters M , zk, and hk from the noisy signal yðnÞ.
In this paper, the subband decomposition is con-

sidered as a pre-processing step obtained through fil-

tering and decimation operations, although in the case

of some methods such as FDM this processing is a
part of the method itself. Different filterbanks may be

considered, including wavelet packet structures [24]

and overlapping schemes [20]. The main drawback of

wavelet packets based filterbanks is that the problem

of frequency aliasing is not taken into account. Now,

it is well-known that if spectral aliasing occurs, it may

lead to the attenuation or suppression of some modes

[24] or resolution problems [30]. So we preferred to
use the overlapping structure presented in [19,20] in

which we admit 50% overlap between two successive

filters. In [19], the decomposition was presented as a

one-step operation using a decimation factor d. Recall

that the decimation operation consists in retaining

only one data sample from a set of d consecutive

samples of a filtered signal. Now, if d is a power of 2,

then exactly the same results may be obtained by
performing successive decimations by 2 as will be

explained below.

2.1. Multi-step decomposition

To simplify the decomposition procedure, the bands

½0; p� and ½�p; 0� of the original signal have to be pro-

cessed separately. Concerning the band ½0; p�, the de-

composition is obtained as follows. Define:

y0;0ðnÞ¼nyðnÞe�jp
2
n; ð2Þ

then the subband signals (or pseudo-FIDs) are given

recursively by filtering and decimation operations, that

is:

yiþ1;2mðnÞ ¼
X
k

gðkÞyi;mð2n� kÞe jp
4
ð2n�kÞ; ð3Þ

yiþ1;2mþ1ðnÞ ¼
X
k

gðkÞyi;mð2n� kÞe�jp
4
ð2n�kÞ; ð4Þ

where gðnÞ is a lowpass filter with passband and stop-
band frequency edges verifying xp ¼ p=4 and

xp < xs 6 p=2 (Fig. 1).

At the end of the decomposition, each subsignal

yi;mðnÞ, where m ¼ 0; 1; . . . ; 2i � 1, is associated to the

frequency interval ½mp
2i
; ðmþ1Þp

2i
� of the original signal. Of

course, the same result could have been achieved by a

one step decomposition with a decimation factor d ¼ 2i.

Obviously, the number of data samples is decreased by a
factor 2 at each iteration. Fig. 2 shows the decomposi-

tion tree and the correspondence between subband sig-
nals and the original signal. The (i;m) coordinates
indicate the depth of the decomposition (i) and the fre-

quency position of each band (m).
The decomposition of the band ½�p; 0� of the original

signal can be obtained, in the same manner as before, by

using y0;0ðnÞ ¼ yðnÞejðp=2Þn. In this case, the resulting

subsignals yi;mðnÞ correspond to the frequency interval

½�ðmþ1Þp
2i

;�mp
2i
�.

It can be easily shown that if a finite impulse response
filter gðnÞ is used, then the subband signal model is given

by the following relation:

yi;mðnÞ ¼
XM 0

k¼1

h0kz
0n
k þ ei;mðnÞ; ð5Þ

for n ¼ 0; 1; . . . ;N 0 � 1, where N 0 is the number of

subband samples. Here M 0
6M is the number of res-

onances in the subband considered. The parameters h0k
and z0k are the subband counterparts of the fullband

parameters hk and zk for the band ði;mÞ. The complex

amplitude h0k depends both on hk and the filter shape.
The subband mode z0k is related to zk by a frequency

shift and an amplification of the damping factor�
jz0kj ¼ jzkj2

i
�
. The way to obtain the fullband val-

ues from their subband equivalents will be given in the

next section. The noise term ei;mðnÞ is a moving-average

(MA) process of order L� L=2i, where L is the order of

the filter [19].

Note that the subband signals obtained from Eqs. (3)
and (4) contain transient samples due to the (finite-time)

filtering operation. This transient (with length L=2 for

each filtering and decimation stage [19]) has to be sup-

pressed to keep the model given in Eq. (5) valid. To do

so, simply truncate the first L=2 samples from signals

yi;mðnÞ before their next decomposition and before the

estimation process.

2.2. Parameter estimation from subbands

The subband signal in Eq. (5) being a damped ex-

ponential signal in noise, the subband parameters z0k and
h0k can be estimated using any high resolution method

such as HOYWSVD [19], LPSVD [2], etc., although the

use of the HOYWSVD is preferable due to the MA

structure of the noise. Concerning the decimation filter,
it can be shown to have a significant influence on the



Fig. 2. (A) Uniform decomposition tree with successive decimations by a factor 2; (B) basic filter structure.
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behavior of the singular values of the data (or auto-

correlation) matrix. This leads common order estima-

tors, such as the MDL criterion [32], to generally

overestimate the number of components. To overcome

this problem, just select the p=2 largest singular values
and discard the p=2 smallest ones when evaluating such

criteria [30], where p is the prediction order.

Once the subband parameters ẑ0k and ĥ0k in a given

band ði;mÞ are estimated, they may be converted into

their corresponding values in the fullband using the

following equation [30]:

ẑk ¼ ðẑ0kÞ
1=2i

exp jp 2mþ1
2iþ1

� �
for band ½0; p�;

ẑk ¼ ðẑ0kÞ
1=2i

exp jp 2mþ1
2iþ1 � 1

� �� �
for band ½�p; 0�:

(

ð6Þ
The fullband values of amplitudes may be similarly

obtained from their subband images by a recursive re-
lation

ĥ0i�1;½m=2�
k ¼ ĥ0i;mk

ðẑ0i;mk ÞLGðẑ0i;mk Þ
; ð7Þ

where

ẑ0i;mk ¼
ẑ2

i�1

k exp � jp 2½m=2�þ1

2

� �
ej

p
4 for m even;

ẑ2
i�1

k exp � jp 2½m=2�þ1

2

� �
e�jp

4 for m odd

8><
>: ð8Þ

and ½x� stands for the integer part of x. The fullband
amplitude is then

ĥk ¼ ĥ00;0k : ð9Þ
2.3. Why an adaptive decomposition?

The subband decomposition approach was shown to

have several advantages over a fullband estimation in

the case of high complexity signals. The model orders

considered are much smaller thus allowing one to handle

with signals with large amounts of resonances and data.

In addition, the frequency and dynamical resolutions are
improved due to the separation of the spectral compo-

nents in different bands, and what is more the detection

rate is higher. The method operates at a lower SNR and

presents a reduced variance as will be shown in Section

4. Finally, the numerical complexity is also decreased.
Generally speaking, it was observed that the division of

the initial problem into several sub-problems, each

much more tractable, allows the estimation algorithms

to give the full extent of their capabilities, thus sur-

passing the FT in detection performances [19]. Of

course, all the performances strongly depend on the

good choice of two parameters, namely the decimation

factor and the prediction order.
In practice, it is first necessary to select manually the

size and the position of the spectral windows in which

the estimation must be performed or, in the case of a

uniform decomposition, to choose the decimation factor

d, thus the number of subbands and their sizes. This

choice should be made in concordance with the signal

encountered, which supposes some a priori knowledge,

that is generally not available. Theoretically, the smaller
is the size of the window the better are the overall

performances (numerical complexity, resolution, esti-

mation, and detection). But since the length of the

pseudo-FIDs decreases with decreasing spectral window

size, it is very likely that the estimation variance and

detection performances will degrade themselves beyond

a certain limit. Thus it is clear that there exist an optimal

decimation factor. Since the subband decomposition is
performed step-by-step, it is possible to decide at each

level whether the decimation should be continued or not

according to some criterion. The use of an adequate

stop-criterion allows the decomposition to adapt itself

to the spectral content of the subbands encountered

resulting in an optimal (in the sense of the criterion)

decomposition tree. The idea of an adaptive decompo-

sition has been studied in several papers [24,26,27] and
many stop-criteria have been considered, like order cri-

teria, energy measures, entropy criteria, etc. Here we

propose the use of a local spectral flatness based



E.-H. Djermoune et al. / Journal of Magnetic Resonance 169 (2004) 73–84 77
stopping rule obtained by testing the whiteness of the
subband residuals.

Concerning the prediction order, it is generally rec-

ommended to select it around N 0=2 so as to achieve a

minimum variance on the frequency estimate. In the

case of a uniform decomposition, it is possible to do so

provided that the length of the pseudo-FIDs N 0 is not

too large. This is true for example when using a large

decimation factor. Anyhow, in this paper we choose to
first favor the maximization of the correct detection rate

over the minimization of the frequency variance. This is

achieved thanks to the adaptive decomposition using an

adequate stop-criterion, thus making the choice of the

prediction order less crucial. Once the decomposition

tree is constructed, it is still possible to make a second

estimation to optimize the variance. This will be further

discussed in Section 3.3.
3. Adaptive subband decomposition

One of the advantages of an adaptive decomposition

is that it enables one to stop the splitting of some bands

in which the decimation does not bring profit in terms of

detection of resonances or parameter accuracy. One can
thus focus oneself on high complexity subbands in

which the decomposition is relevant. So, the adaptive

decomposition process is similar to the uniform one

except that it may be stopped at any level for some

bands according to a given stop-criterion. Fig. 3 shows

the principle of such an approach.

3.1. The stop-criterion

Several stop-criteria have been already proposed, in-

cluding order criteria [24,28], entropy and energy mea-

sures [26,33], etc. It was shown [29,30] that stop-criteria

based on the properties of estimation residuals are

preferable because they ensure better performances in

terms of detection rate and estimation accuracy. The
Fig. 3. (A) Adaptive decomposition tree and corresponding
residuals in a given band ði;mÞ are defined as the dif-
ference between a subband signal and its estimate

�i;mðnÞ ¼ yi;mðnÞ � ŷi;mðnÞ ¼ yi;mðnÞ �
XM̂ 0

k¼1

ĥ0k ẑ
0n
k ; ð10Þ

for n ¼ 0; 1; . . . ;N 0 � 1. Here M̂ 0 is the number of esti-

mated modes in the subband considered. Ideally, if all

modes have been retrieved (i.e., M̂ 0 ¼ M 0), then the re-

siduals should be close to a white noise. If one or more

modes are missed, then the sequence �i;mðnÞ is no more

white. Several time-domain whiteness tests may be en-

visaged. Equivalently, it is possible to test the spectral
flatness. The problem is that, in the case of the filterbank

considered here, the residuals are not really white be-

cause of the filtering process. However, this non-white

feature is particular: in the spectral domain, it can be

seen that the spectral shape is only affected on the edges

corresponding to the transition bands of the filter. So, in

the frequency interval ½�p=2; p=2� corresponding to the

filter�s passband, the power spectral density (PSD)
should still be considered as flat if the residuals do not

contain modes any more. Thus, by considering a local

spectral flatness test, i.e. restricted to the passband of the

filter, it is possible to make a decision about stopping or

continuing the decomposition process.

3.2. The measure of flatness

A lot of spectral flatness tests have been proposed

among which Fisher�s whiteness test [34] is the most

popular. In the case of damped complex exponentials

signals, we found that Drouiche�s test [35] is more ap-

propriate because of a better detection rate [30]. The

latter is based on the periodogram estimate of the PSD

of �i;mðnÞ defined by

P̂N 0 ðxÞ ¼ 1

2pN 0

XN 0�1

n¼0

�i;mðnÞejnx
������

������
2

: ð11Þ
non-uniform subbands; (B) stopping rule principle.
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The measure of spectral flatness, restricted to the in-
terval ½�p=2; p=2�, is given by the following quantity

[35]:

ŴN 0 ¼ ln
1

p

Z p
2

�p
2

P̂N 0 ðxÞdx� 1

p

Z p
2

�p
2

ln P̂N 0 ðxÞdx� c; ð12Þ

where c is the Euler constant (c ¼ 0:57721). To decide

whether or not P̂N 0 ðxÞ is flat (or constant), the quantity

ŴN 0 is compared to a threshold ta which is fixed ac-

cording to the desired false alarm rate a by using the
following relation:

ta ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp2=6� 1Þ

N 0

r
erf�1ð1� 2aÞ; ð13Þ

where erf�1ðxÞ is the inverse of the standard error

function. The false alarm rate a is a free parameter. In

this paper, it is fixed to 1%. The decision about stopping

or carrying on the decomposition is then taken accord-

ing to the following rule:�
ŴN 0 < ta ! stop;
ŴN 0 P ta ! continue:

ð14Þ
3.3. Implementation issues

When using the proposed method, it is first necessary
to choose a prediction order p for the estimation algo-

rithm. In the case of uniform decomposition or fullband

estimation, the latter must be chosen carefully because it

is directly related to the number of components and

samples. In the case of a single undamped mode and at

high SNR, it has been shown that the optimal choice of

p (in the sense of the minimization of the frequency

variance), for nearly all the estimation methods, is
p ¼ N 0=3 or p ¼ 2N 0=3 where N 0 is the number of sub- or

fullband data samples [14,36,37]. This result was then

generalized for multiple undamped sinusoids and it is

now admitted that the optimal p is around N 0=2, pro-
vided that the modes are well separated and the SNR is

high. Now, in the case of a damped sinusoid, the mini-

mum variance is reached only when p ¼ N 0=3 for the LP

method [38].
When the adaptive approach is considered, there are

two ways to choose this parameter [25]. We can for

example choose p ¼ N=3 in the fullband (N is the

number of total data samples) and then divide it by 2 as

the decomposition gets deeper. This tuning is used for

example in [16,17] where the spectral windows are im-

plicitly assumed to be sufficiently small but it is not at-

tractive in our case because of the large matrices
involved in the first steps of the decomposition. Another

approach consists in using the same prediction order for

all decimation levels (i.e., all subband signals) [25]. In

this case, the role of the stopping rule is to obtain the set

of subbands (spectral windows) in which the prediction
order chosen will be convenient, because the method is
able to adapt itself to the local content of the signal.

Indeed, if the order is too small, the decomposition will

be deeper because the algorithm will tend to the situa-

tion where the average number of peaks in each subband

corresponds roughly to the order selected. On the con-

trary, if the order is too large, it will become sufficient at

an early stage and the decomposition process will be

shorter. As a rule of thumb, for experimental signals, the
prediction order has been chosen as a fraction (say 1/3

or 1/2) of the expected total number of linesM , provided

that N � M .

Of course, this discussion concerns the maximization

of the detection rate and not the minimization of the

estimation variance. But since the stopping rule per-

forms also an a posteriori validation by measuring the

distance of the residuals to a white noise, the decom-
position does not stop until the estimated parameters

are close to the true ones. So the algorithm does not

ensure a minimum variance but it is clear that the var-

iance cannot be far from its minimum. Anyhow, since

the detection rate is maximized, it is still possible to re-

run the algorithm (only in the subbands retained by the

method at first run) by choosing the theoretical optimal

p to minimize also the variance. Note that, for all the
experimental signals we have analyzed, this step had not

led to significant improvements in the estimation results.

The only other choice that the user has to make is

concerning the false alarm rate for the stop criterion.

The latter is generally fixed in the literature between 1

and 10%. From our experience, this parameter is far

from being critical when chosen in the previous interval

since it influences little the final decimation level and not
at all the estimation performances. In our simulations,

we always use a ¼ 1%.

The method proposed is now briefly summarized.

(1) Choose the band to be decomposed (½0; p� or

½�p; 0�).
(2) Perform one step of the subband decomposition

using Eqs. (3) and (4).

(3) For each resulting band do the following

(a) obtain the subband parameters h0k and z0k from,

for example, LPSVD or HOYWSVD,

(b) generate the residuals (Eq. (10)),

(c) compute ta and evaluate the flatness (Eqs. (13)

and (14)),

(d) if residuals are white then this band is a terminal

one and the decomposition should be stopped,

otherwise the decomposition must be continued.

(4) Search for a decomposable band from the whole

tree.

(5) Repeat step 2, until no decomposable band is found.

(6) Convert all the subband parameters into their full-

band values.

Note that a Matlab implementation of this algo-

rithm is available from the authors on request. The
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present method will now be applied to a simulation
example and then to two experimental 13C NMR sig-

nals.
Fig. 4. Results achieved on simulation signal. (A) Variance of fre-

quency x1; (B) miss ratio; and (C) percentage of terminal bands. (—),

Fullband estimation; (��), uniform subband decomposition; (�),

proposed adaptive approach; and (� �), MDL–based adaptive de-

composition.
4. Simulation example

The aim of this section is to give an illustration of the

advantages of subband decomposition over a fullband
estimation and of the superiority of adaptive decom-

positions over uniform ones. The simulation signal used

here consists in 2 damped exponentials in zero-mean

white noise. The two components, which frequencies are

set to 0.11 and 0.15, as in [24], have both the same

amplitude and a damping factor of 0.015. The peak

SNR is varying between 0 and 20 dB. For each SNR

value, multiple simulations have been performed using
100 realizations of the additive noise. The results

achieved using the suggested adaptive subband decom-

position are compared to those obtained with three

other approaches. The first considers the MDL-based

adaptive decomposition proposed in [24], the second

uses a uniform decomposition and the third performs a

fullband estimation. Each approach uses the HO-

YWSVD estimation method. Results achieved when
using the LPSVD method can be found in [29]. All ap-

proaches are compared on the basis of their estimation

variances, their miss ratios and their percentage of ter-

minal bands relatively to the uniform decomposition.

The miss ratio is defined as the percentage of modes not

detected.

The prediction order is initially fixed to 64 and is then

divided by 2 between two successive levels. This partic-
ular choice of the order is intended here to make the

fullband estimation not too penalized. Results achieved

are presented on Fig. 4. In terms of variance, it appears

that at low SNR, the subband estimations are better

than the fullband one, the adaptive approaches yield a

lower frequency variance than the uniform one, and the

proposed adaptive approach leads to the lowest vari-

ance. At high SNR, the global approach performs better
than all other approaches, which could be expected in

view of the rather large prediction order used with re-

gard to the number of components. But, it can be seen

that the proposed approach tends to show the same

behavior as the fullband one.

From the point of view of detection, it can be ob-

served that subband approaches are always superior to

the fullband one. The proposed approach yields the
smallest miss ratio. This is because the decomposition is

stopped when the total decimation factor is ‘‘optimal’’ in

the sense that further decimation does not improve the

detection rate and may even make the estimation per-

formances decrease.

Finally, concerning the computational load, Fig. 4C

shows that the MDL-based one leads to the decompo-
sition of 5 bands, while our approach leads to decom-

pose only two of the eight bands.
5. Experimental results

In this section, results achieved on experimental 13C

NMR signals are presented. At first, the uniform and

adaptive decompositions are compared, along with

FDM, on a signal called NMR1, resulting from quan-

titative experiments on a synthesized mixture of 19

compounds in CDCl3, with TMS as the internal refer-

ence (see [19] for details about the sample). This signal is
complex enough to reveal important differences between

the uniform and the adaptive subband approaches.

Second, we consider a set of signals named NMR2,

corresponding to a natural substance (gypsogenin 3-O-

glucuronide extracted from the root of Silene vulgaris) in

pyridine-D6 (see [39] for details). These signals are ob-

tained using different numbers of accumulations. This
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allows us to point out the superiority of our approach
over the FT at low SNR.

5.1. Signal NMR1

Regarding the present analysis, the main features of

signal NMR1 are its length (128 k) and the number of

peaks (104). For this signal, a fullband estimation via

high resolution methods is nearly impossible because of
the large amount of data and of the relatively high

number of resonances [19]. Thus, we only consider

uniform and adaptive subband approaches. For uni-

form decompositions, the signal is split into 256 spectral

windows between 0 and 0.5. This is obtained, in the case

of FDM, via 256 contiguous rectangular windows of

equal size. In each spectral window ½fmin; fmax�, the
Table 1

Results achieved on signal NMR1

Decomposition Estimation Detected modes Bands

Good False Stopped Total

Uniform HOYWSVD 94 23 0 256

FDM 90 5 0 256

LPSVD 90 6 0 256

Adaptive HOYWSVD 95 7 43 45

LPSVD 93 3 54 57

The proposed adaptive decomposition detects more components

and generates less subbands than the uniform one.

Fig. 5. Adaptive decomposition of signal NMR1. (A) Absorption spectrum

decomposition tree tracks the bands where peaks are present.
Fourier basis size is fixed according to Kwin ¼
Nðfmax � fminÞ=2. For HOYWSVD and LPSVD, the

prediction order is set to p ¼ 60 in each subband. In the

case of the adaptive approach, only HOYWSVD and

LPSVD are considered, both using a prediction order

p ¼ 60. The results are shown in Table 1. It can be seen

that, for a uniform grid, the HOYWSVD method is

always better than LPSVD and FDM in terms of correct

detections but at the expense of a larger false detection
rate. Obviously, the adaptive approach enables one to

improve both the good detection and the false alarm

rates. Finally, it appears clearly that the computational

burden is drastically reduced with the adaptive ap-

proach. Indeed, the total number of bands analyzed is

diminished from 256 to 45 or 57 depending on the es-

timator considered.

The decomposition tree obtained with the adaptive
decomposition approach and the HOYWSVD estimator

is shown on Fig. 5. One can easily observe that the de-

composition tracks the spectral bands where informa-

tion is localized and that the ‘‘empty’’ bands are stopped

at low decimation levels. The resulting residuals are al-

most white, which indicates that nearly all resonances

were (well) extracted. For example, it can be seen that,

in the bands [0.21875, 0.25] and [0.3125, 0.34375], the
decomposition is stopped early because no modes are

present. Indeed, the decomposition gets deeper in the

spectral intervals containing several close modes (e.g., in

the region around 0.15). Finally, in some cases, there is
; (B) decomposition tree; and (C) estimation residuals per band. The
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only one line but the decomposition gets even so deeper
(e.g., line between 0.45 and 0.5). This is because either

the frequency or the amplitude of this line was not ac-

curately estimated at earlier stages.

Results achieved using the adaptive approach asso-

ciated to the HOYWSVD estimator, and FDM, are

partially shown in Table 2 together with the theoretical

lines and those obtained in [19]. In terms of accuracy on

the frequency estimates, it is clear that all approaches
are comparable. The estimation error is of the order of
Table 2

Results achieved in some frequency intervals of signal NMR1

Line Theoretical Uniform

d (ppm) I (%) f A (%)

. . . . . . . . . . . . . . .

6a 144.26 32.05 0.10277 34.87

7a 144.23 24.45 0.10286 44.31

8a 144.22 17.10 — —

9a 144.06 42.38 0.10303 40.92

. . . . . . . . . . . . . . .
31a 129.11 43.37 0.14073 41.88

32a 129.06 100.00 0.14092 100.00

33a 128.94 39.40 0.14124 44.53

34a 128.72 24.45 0.14181 25.99

35a 128.47 22.98 0.14239 20.57

36a 128.37 50.86 0.14266 52.06

37a 128.31 64.11 0.14275 61.54

38a 128.25 100.00 0.14293 94.19

39a 128.23 22.98 0.14296 34.53

40a 128.23 24.45 0.14301 29.07

41a 128.15 25.19 0.14315 25.92

42a 128.07 1.70 — —

43a 127.88 5.08 0.14381 7.46

44a 127.86 64.11 0.14392 64.41

. . . . . . . . . . . . . . .
50a 126.06 50.38 0.14848 47.19

51a 126.03 7.42 0.14851 27.34

52a 125.95 42.38 0.14861 44.22

53a 125.81 5.08 0.14903 2.01

54a 125.80 48.70 0.14906 55.16

55a 125.72 34.20 0.14931 33.47

56a 125.63 11.49 — —

57a 125.62 0.85 — —

58a 125.59 32.05 0.14958 50.67

59a 125.45 7.42 0.14996 8.30

60a 125.38 43.37 0.15006 38.66

61a 125.33 50.00 0.15028 49.36

62a 125.23 3.52 0.15052 3.62

63a 124.85 24.45 0.15146 25.78

. . . . . . . . . . . . . . .
72a 0.27026 1.02

73a 77.30 0.27063 2012.26

73a

74a

74a 0.27086 10.77

75a 77.00 0.27143 2003.53

76a 0.27151 11.99

76a

77a 76.70 0.27223 2038.43

. . . . . . . . . . . . . . .

Comparison with the results obtained in [19] and those achieved by FDM
10�5. Line 56 was not detected by the uniform subband
methods (including FDM) but was detected by the

adaptive one. Note that, lines 72, 73a, 74a, 74, 76, and

76a corresponds to false detections (they do not appear

in the theoretical line list). Finally, from the point of

view of amplitudes, the three approaches yield roughly

the same estimates except for one or two cases (lines 39

and 55). One can observe that, near the lines associated

to the solvent (lines 73, 75, and 77), the spurious peaks
detected by the uniform approaches have rather large
FDM Adaptive

f A (%) f A (%)

. . . . . . . . . . . .

0.10277 37.79 0.10277 33.33

0.10286 50.14 0.10285 39.46

— — — —

0.10303 41.79 0.10303 36.45

. . . . . . . . . . . .
0.14073 39.90 0.14072 40.40

0.14092 100.00 0.14092 100.00

0.14124 39.43 0.14124 35.96

0.14181 22.91 0.14181 22.36

0.14238 35.58 0.14239 21.92

0.14266 53.03 0.14266 48.16

0.14275 67.93 0.14275 59.37

0.14293 71.99 0.14293 94.41

0.14297 104.01 0.14297 31.77

0.14300 38.36 0.14301 44.52

0.14315 30.80 0.14315 25.76

— — — —

0.14382 6.09 0.14382 4.81

0.14392 70.79 0.14392 58.77

. . . . . . . . . . . .
0.14848 69.18 0.14848 43.71

— — 0.14851 13.19

0.14861 46.19 0.14861 39.36

0.14901 8.81 0.14902 7.16

0.14907 52.95 0.14906 46.31

0.14931 35.26 0.14931 30.14

— — 0.14955 1.86

— — — —

0.14958 52.26 0.14959 41.79

0.14997 9.36 0.14996 7.28

0.15006 41.92 0.15006 37.04

0.15028 50.44 0.15028 49.35

— — 0.15052 3.58

0.15146 20.10 0.15146 20.91

. . . . . . . . . . . .
0.27037 164.75

0.27063 1948.82 0.27063 1898.45

0.27068 2460.37

0.27074 301.65

0.27086 69.25

0.27143 2165.82 0.27143 1899.61

0.27203 395.39

0.27223 2169.71 0.27223 1854.96

. . . . . . . . . . . .

.



Table 3

Results achieved on signals NMR2 as a function of the number of

accumulations

Line Theoretical Estimated frequencies

d (ppm) 256 512 1024 2048

1 10.85 0.03163 0.03163 0.03163 0.03163

2 15.52 0.04098 0.04099 0.04099 0.04099

3 17.25 0.04447 0.04447 0.04448 0.04447

4 20.29 0.05058 0.05060 0.05061 0.05059

5 23.55 0.05721 0.05715 0.05715 0.05715

6 24.58 0.05921 0.05920 0.05920 0.05920

7 25.02 0.06015 0.06012 0.06015 0.06013
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amplitudes. This is because the estimation methods tend
to fit broad resonances by several narrower ones.

The total calculation time of the adaptive approach

was of 1min with the HOYWSVD estimator and of 30 s

with LPSVD (on a PC Pentium at 2.4GHz), that is a

little shorter than with the uniform approaches.

5.2. Signal NMR2

The set of signals NMR2, with length 64 k, is ob-

tained using a number of accumulations (Na) which

varies between 1 and 2048. For example, the spectra

corresponding to Na ¼ 16, 512, and 2048 are shown in

Fig. 6. The experimental data are always corrupted by

some spurious peaks due to instrumentation and which

can occur whatever the number of accumulations is.

These lines being very narrow, their corresponding
modes are close to undamped sinusoids, so they are not

retained by the HOYWSVD method, which makes use

of the unit circle criterion [19]. They can be easily rec-

ognized in Fig. 6 as they do not follow the accumulation
Fig. 6. Absorption spectra of signals NMR2. (A) Na ¼ 16; (B)

Na ¼ 512; and (C) Na ¼ 2048. For illustrative purpose, the signals

presented in this figure are phase corrected and their baselines are

suppressed, but the signals used for the trials were not corrected before

being processed. (*) indicate spurious peaks.
process. For the sake of clarity, they have been starred
in the figure.

For this example, the number of accumulations nec-

essary to retrieve all of the 45 spectral lines using the FT

is 2048. Table 3 shows the results obtained for Na ¼ 256,

512, 1024, and 2048 (lines corresponding to the sol-

vent are not presented). One can observe that our

adaptive approach combined with HOYWSVD detects
8 27.01 0.06412 0.06412 0.06412 0.06412

9 30.87 0.07191 0.07191 0.07191 0.07191

10 32.64 0.07554 0.07558 0.07556 0.07558

11 33.17 0.07655 0.07655 0.07655 0.07655

12 35.86 0.08191 0.08189 0.08192 0.08192

13 36.06 0.08231 0.08231 0.08232 0.08231

14 37.90 0.08594 0.08596 0.08599 0.08599

15 39.94 0.09011 0.09012 0.09011 0.09011

16 41.25 0.09279 0.09276 0.09276 0.09276

17 41.94 0.09415 0.09415 0.09415 0.09415

18 46.83 0.10398 0.10399 0.10399 0.10399

19 47.09 0.10452 0.10455 0.10453 0.10453

20 48.36 0.10712 0.10709 0.10709 0.10709

21 48.70 0.10773 0.10773 0.10773 0.10773

22 54.96 0.12037 0.12037 0.12037 0.12037

23 61.64 0.13377 0.13374 0.13375 0.13375

24 67.08 0.14483 0.14481 0.14479 0.14479

25 70.05 0.15071 0.15070 0.15069 0.15070

26 70.66 0.15194 0.15197 0.15197 0.15197

27 71.21 0.15296 0.15301 0.15298 0.15299

28 73.51 0.15774 0.15775 0.15773 0.15774

29 74.48 0.15963 0.15963 0.15964 0.15964

30 75.09 0.16091 0.16090 0.16090 0.16090

31 75.28 0.16130 0.16130 0.16130 0.16130

32 76.59 — 0.16394 0.16395 0.16395

33 77.02 — 0.16487 0.16488 0.16488

34 78.29 0.16733 0.16741 0.16741 0.16740

35 78.37 — 0.16754 0.16750 0.16752

36 84.30 0.17946 0.17945 0.17946 0.17945

37 85.94 0.18266 0.18264 0.18266 0.18266

38 103.61 0.21831 0.21835 0.21836 0.21836

39 104.03 0.21917 0.21920 0.21919 0.21920

40 104.76 0.22063 0.22064 0.22064 0.22064

41 121.90 0.25504 0.25505 0.25506 0.25506

42 145.00 0.30159 0.30159 0.30159 0.30159

43 171.90 0.35576 0.35574 0.35572 0.35571

44 179.90 0.37181 0.37180 0.37180 0.37181

45 209.84 0.43209 0.43210 0.43212 0.43213

Correct detections 42 45 45 45

The proposed approach detects all of the modes from Na ¼ 512

whereas the FT becomes exploitable at Na ¼ 2048.
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all resonances for Na P 512. So, the adaptive subband
decomposition ensures detection performances equiva-

lent to those achieved with a Fourier approach, but at a

much lower SNR. In addition, the accuracy of the es-

timated frequencies do not vary much between Na ¼ 512

and Na ¼ 2048 as may be seen on Table 3. The maximal

deviation between frequencies estimated at Na ¼ 512

and Na ¼ 2048 is 3� 10�5 (lines 12, 14, 43, and 45).

Thus, the necessary number of accumulations may be
approximately divided by a factor 4, which corresponds

for this experiment to an acquisition time of 15min in-

stead of 1 h. So, generally, the subband decomposition

approach allows one to expect an important reduction

of experimentation times.
6. Conclusion

This paper presents an almost automated, fast, and

non-iterative procedure to estimate directly the param-

eters of NMR from time-data. It is based upon a sub-

band decomposition of the initial signal and the use of

standard identification methods such as LPSVD and

HOYWSVD techniques. The decomposition is realized

in an adaptive fashion thanks to a new stop-criterion
consisting in a local flatness test of the subband esti-

mation residuals.

It is known that subband decomposition has several

advantages in terms of detection rate, frequency reso-

lution, and numerical complexity relatively to fullband

estimators. Moreover, this technique is able to handle

with signals of high complexity (i.e., long FIDs with

many resonances). The adaptive scheme proposed in the
present paper, further improves the performances of the

subband decomposition in the sense that there is no

more need to select the decimation factor. Indeed, the

method automatically selects the signal-bearing bands

and decides whether or not a band should be further

decomposed. Furthermore, the method is more robust

to changes on the prediction order and the estimation

variance is ‘‘controlled’’ by the a posteriori validation
involved by the stop-criterion. Finally, this approach is

more efficient in terms of calculation time because of the

rejection of empty bands.

The results achieved on a simulation example were

compared to those obtained with two other decompo-

sition schemes and a fullband method. It appeared that

the performances of the proposed algorithm are actually

better from the point of detection as well as estimation
variance. Two experimental signals were also consid-

ered. On the first one, the method was compared with

the corresponding uniform approach and FDM. It was

observed that the adaptive approach improves the de-

tection rate and decreases both the false detection rate

and the numerical complexity. On the second signal, it

was shown that the method performs better than the FT
at low SNR, which allows one to expect a notable de-
crease of experimentation time.

Finally, it must be pointed out that the computation

times did not exceed 1min, even on long signals with a

hundred resonances. One could think that this is a long

time as compared to the fast FT, but one should remind

that the FT does not give a direct access to the relevant

parameters. Moreover, the latter requires some other

pre- and post-processing like phase and baseline cor-
rections and peak-picking.
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